

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol.16 (2011), Salim, pg. 133

FORM FOSTERING: A NOVEL DESIGN APPROACH FOR
INTERACTING WITH PARAMETRIC MODELS IN THE EMBODIED
VIRTUALITY
PUBLISHED: January 2011
EDITOR: Turk Ž.

Flora D. Salim, Research Fellow,
Spatial Information Architecture Laboratory (SIAL), RMIT University, Melbourne, Australia;
flora.salim@rmit.edu.au; http://florasalim.com

Hugo M. Mulder, Senior Engineer,
Arup Advanced Technology + Research, Arup, London, United Kingdom;
hugo.mulder@arup.com;

Jane R. Burry, Research Fellow,
Spatial Information Architecture Laboratory (SIAL), RMIT University, Melbourne, Australia;
jane.burry@rmit.edu.au; http://www.sial.rmit.edu.au/People/jburry.php

SUMMARY: This paper investigates the assimilation of embodied virtuality with parametric modelling to
inform various stages of architectural design. Embodied virtuality is a term introduced by Mark Weiser in 1991
to describe the era of ubiquitous computing. Traditionally, the data used as input to a parametric model needs to
co-exist in the digital world, stored in an archive or file system of our computer. However, with the proliferation
of sensor and mobile devices, data can now be found everywhere in the physical world and the boundaries
between the physical and the digital has become blurred. There is a need to integrate the real world and the
digital information space for designing parametric models. The assimilation of digital data from the physical
world with the existing CAD tools will create a synergy between form finding and form making. This paper
introduces the notion of form fostering, which stands in between physical form making and digital form finding.
Form fostering takes various inputs from the physical world to inform a parametric model or to actuate a
physical model in the built environment. We present early experiments of Form Fostering, which include the use
of a Wii Remote, an Arduino processing board, servo actuators and a camera as haptic input and interaction
devices. The potential benefits of designing in embodied virtuality are significant since designers can get real-
time input from both the physical context and from interaction with the parametric model.

KEYWORDS: parametric design, flexible modelling, physical computing, embodied virtuality, ubiquitous
computing, responsive architecture, Wii, Arduino

REFERENCE: Flora D. Salim, Hugo M. Mulder, Jane R. Burry (2011) Form fostering: A novel design
approach for interacting with parametric models in the embodied virtuality, Journal of Information Technology
in Construction (ITcon), Vol. 16, pg. 133-148, http://www.itcon.org/2011/9

COPYRIGHT: © 2011 The authors. This is an open access article distributed under the terms of the Creative
Commons Attribution 3.0 unported (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://www.itcon.org/
http://www.itcon.org/
http://www.itcon.org/

ITcon Vol.16 (2011), Salim, pg. 134

1. THE EMBODIED VIRTUALITY
The adoption of ubiquitous computing and sensory technology into interactive and responsive architectural
design changes the ways in which we think about architecture, how we describe architecture and how we design
architecture.

Mark Weiser coined the term ubiquitous computing (Weiser, 1991), which refers to computer technologies that
disappear and are woven into the fabric of everyday life until they are no longer distinguishable from it.
Computation is now embodied in day-to-day objects and our interaction with them is based on our familiarity
with these real world objects (Dourish, 2001). Therefore, ubiquitous computing is also referred to as embodied
virtuality (Weiser, 1991). Instead of bringing the real-world into the virtual space (the computer), the virtuality
now exists in our world, embodied within the real-world objects and representations.

In Milgram’s virtuality continuum, mixed reality is the spectrum between physical reality and virtual reality, as
illustrated in Fig. 1 (Milgram and Kishino, 1994). In augmented reality, users are interacting with physical
objects in the physical world, whereas in augmented virtuality, users are interacting with the virtual world, yet
both the virtual and physical objects are displayed seamlessly in the respective worlds (Hughes et al., 2005).

FIG 1: Milgram’s virtuality continuum (Milgram and Kishino, 1994)

Embodied virtuality is another form of mixed reality, since there is no longer clear separation between the
physical (or the social) and the virtual. The ends of the spectrum have met and become a continuous loop (Fig.
2). Interacting with the embodied virtuality is termed ‘embodied interaction’. It is an interaction that happens in
the physical and social world which gives forms, substance, and meaning within a specific setting and
circumstances (Dourish, 2001). Examples of embodied interaction have been demonstrated from the mid of
1990s, such as in metaDesk or ambientRoom projects by Hiroshi Ishii (Ishii and Ullmer, 1997). This is referred
by Ishii as tangible interaction.

FIG 2: Embodied Virtuality Continuum

However, such embodiment is still an unfamiliar term in architectural design. Since the world has become more
digital, architects have shifted from designing with pens on papers to modelling with the mouse, viewing
computer screens. Three dimensional architectural computer models in the digital space are generally very
malleable in parametric software like Digital Project (Dassault Systèmes CATIA), Generative Components
(Bentley Microstation) or Grasshopper (McNeel Rhinoceros). Such parametric modelling tools have speed up
the process of finding the forms that satisfy design constraints and to the aesthetic and other criteria of the
designer. The methods and tools for designing, prototyping and calibration of architecture in the embodied

ITcon Vol.16 (2011), Salim, pg. 135

virtuality are still very limited in these types of modelling environment in current practice and research. Given
the flexible modelling power of existing parametric software and the inherent parametric way of thinking in
design, we posit that there is potential for extending these tools and techniques to allow for a more continuous
process between physical and virtual representations while designing architecture.

Although there is no design without parameters, the term parametric design has largely been associated with the
digital. Architects who use the parametric approach to design an architectural representation need to set up and
work with digital parameters inside the computer. Data associated with the parameters of the model needs to be
introduced within the software or accessed from data files; or in the context of embodied virtuality, the data can
be taken from the outside world. This research explores real-time embodied interaction with parametric
modelling through a series of prototypical experimental models. We present the preliminary outcomes of testing
the hypothesis that designers can now manipulate parametric models set up either in the physical or the virtual
worlds and directly associate real-time and live data sources from the real world, ambient environments, and
haptic devices with parameters of the model. Such a set up allows for simulation of responsive architecture in
early stage design.

This paper is organized as follows. Section 2 reviews relevant responsive architecture precedents. Section 3
introduces the notion of form fostering. Section 4 elaborates on form fostering experiments. Section 5 presents
our observations, lessons learnt, and future work. Section 6 concludes the paper.

2. RESPONSIVE ARCHITECTURE
The ubiquity of bits and atoms in the mixed reality has taken architectural design to new frontiers (Massachusetts
Institute of Technology, 2008). Since the introduction of “kinetic architecture” in 1970 by Zuk and Clark (Zuk
and Clark, 1970), there are various terms that have been used to connote the ability of architecture, space,
structure, or building to respond to stimuli from users or the environment by means of changes in shape,
organization, content or appearance. Some of these responses are more complex than others, can include
feedbacks and are adaptive.

The cybernetician Gordon Pask has suggested an architectural system that is involved in a continual conversation
with the users and the environment. In 1978, Pask’s key collaborators, Cedric Price and John Frazer,
conceptualized the Generator project, known as the first concept for an intelligent building (Frazer, 1995).
Adaptive architecture has only physically materialized in the last decade. Built examples are the Aegis
Hyposurface project (SIAL) by dECOi that is an interactive facetted metal surface driven by pistons that
responds with to multiple inputs simultaneously. Kas Oosterhuis (ONL) developed the Muscle interactive
pavilion (Oosterhuis and Biloria, 2008) that responds to environmental stimuli and theoretically to other similar
pavilions. The Korea Digital Pavillion (Oosterhuis and Lénárd, 2008), in which the forms and shapes of the
interactive installation are adaptive to the past and present visitors, is an example of architectural design in the
augmented reality. The Digital Water Pavilion, designed by the Carlo Ratti (carlorattiassociati) and the MIT
Senseable City Lab, encompasses an interactive and responsive water façade in Zaragoza, Spain (Massachusetts
Institute of Technology, 2008). In these examples of responsive architecture, physical changes to the building
occur in real-time and are driven by physical events, physical variations in the environment, or physical
interaction between the architecture and the users.

To our knowledge, there is hardly any research into modeling and simulating responsive architecture using
parametric design tools nor applications in practice. By extending the parametric design approach to
accommodate both the physical and the virtual of the embodied virtuality, the premise of responsive architectural
prototypes can first be tested in a flexible manner before construction. The methods and tools for designing in
the embodied virtuality described in this paper are built upon existing parametric software capabilities.

ITcon Vol.16 (2011), Salim, pg. 136

3. FORM FOSTERING
Form fostering challenges the traditional approach of informing a virtual model purely with virtual ‘knowledge’.
It seeks to measure data in the physical world and ‘capture’ relations and interactions that exist in the physical
world (physical parameters) in a larger model that is not only virtual. The architectural design models therefore
become mixed: partly virtual and partly physical.

Inherently every design is based on parametric and associative thinking. Design decisions are based or dependent
on variables and on other decisions. The extent to which certain factors can play a role in a design varies.
Parametric modelling uses parameterized relationships between geometrical components in the design to define
forms (Monedero, 2000). A parametric model comprises parameters and constraints (Hernandez, 2006). It
responds to changes of parameter value or definition and a changing graph of associations without erasure of
parts of the model or starting the design model from scratch. Designers alter the value of the parameters to
explore design variations that can be generated from the same model (Hernandez, 2006).

Form fostering takes sensory input from the physical worlds and parameterizes the forms with the inputs
received. Collaborative adaptation is managed in form fostering since sensory input can vary. Designers make
decisions on which sensory inputs need to be used to drive the parametric variations.

Fig. 3 depicts a scenario of associations between parameters in a model following the form fostering approach. A
parameter can be associated with another virtual parameter and informed by virtual events. A parameter can also
be linked with the physical environment and receives input from sensor or haptic devices. A parameter can also
be static or constrained if it is informed for example by a static object in the built environment. This can be
useful if an existing building or an already built part of the building is to be included in the model. This allows
for design to take place in the mixed reality. In responsive architecture the relations between the building and the
environment remain dynamic, even when the construction process has finished: an instance of the parametric
model has materialized.

FIG 3: Parametric associations in form fostering

Form fostering requires interfaces for the mixed reality, both to interact with users and with the environment.
The dynamic feedback loop is facilitated through informing the virtual models with changes in the physical
world as well as informing the physical objects with changes in the virtual world. Real-time updates in the model
can be managed in form fostering since designers can now use sensors, which stream data from the physical
environment, as input to drive the parametric variations in the model.

ITcon Vol.16 (2011), Salim, pg. 137

4. FORM FOSTERING EXPERIMENTS
The experiments described in this paper use Bentley GenerativeComponents (GC) and McNeel Rhinoceros
(Rhino) to build the parametric models. GC is a software that is based on Bentley Microstation and allows users
to define objects in Microstation through a different interface. Users can add additional features and functions by
coding, compiling and adding Dynamic Link Library (DLL) files as plug-ins to GC. Through GC, parametric
relations can be defined between objects in Microstation. Complex models can be produced in this way as the
relations can also be based on script or code.

We present in detail three form fostering prototypical experiments designed to test certain capacities “in
principle”. The first one is using a Nintendo Wii Remote (Wiimote). And the second one is using an Arduino
processing board, a servo actuator and a camera. Both experiments were developed in only four days during
SmartGeometry 2009 using low-cost materials. The third experiment uses a set of light sensors to inform a
responsive cube façade opening as well as a louver model set up in Rhino. This experiment is a Master student’s
summer project that was run in RMIT. These early experiments led to the development of an open source
software platform introduced in the Parametrics and Physical Interaction workshop cluster in SmartGeometry
2010. The timeline and collaborators of the experiments presented in this paper are illustrated in Fig. 4.

FIG 4: The timeline of form fostering experiments and the people involved

1 The Wii Remote Experiments
A Wii Remote (Wiimote) is the hand held motion detection sensor and controller for Nintendo Wii. The main
components of a Wiimote are a 3-axis-accelerometer, an infrared emitter, and a Bluetooth interface. A Wiimote
can be used to communicate with any computing device that has Bluetooth interface. Given its internal features,
low cost, and the release of the open source for Wiimote development, in C#.NET (Peek, 2007) and Java
(WiiRemoteJ, 2008), Wiimote has become a state-of-the-art wireless sensor device. Infrared tracking and
augmented reality applications with Wiimote have been developed (Lee, 2008). However, none has actually
incorporated the use of Wiimote to interact with parametric modeling for design. In the following experiments

ITcon Vol.16 (2011), Salim, pg. 138

we have started to explore the potential of the Wiimote as a more embodied and possibly more intuitive interface
in three-dimensional space with which to interact with parametric models. We first developed a Rhino plug-in
that utilizes Wiimote to draw curves in 3D space. The intention was not to replace the mouse as an interface for
digital designing but to explore the potential of mapping of the user’s embodied space onto a 3D model.
Interaction with a mouse is restricted to 2D movement on a table top. With the Wiimote, users can either sit or
stand while moving their Wiimotes and interacting with the 3D virtual and physical table top models. Their
movements and the accelerations of those movements can be mapped parametrically to the relationships in the
3D model on the screen. This also has the potential to bring the interaction with the model into a more inclusive
social space for collaborative design meetings. The successful experiment with Rhino 3D motivated the form
fostering experiment of the Wiimote interacting with GC.

In the first set of experiments, the Wiimote is staged as an input for the virtual model. The purpose of these
experiments is twofold; first, to explore new modes of interaction with 3D parametric models, second, to
perform “stress testing” on the model itself. Since multiple parameter value changes are sent within split
milliseconds as the Wiimote is moved or pressed, the latter test is useful to inform us how resilient a 3D
parametric model is when the values of the parameters are updated with streams of sensor data.

We have developed a custom C# function in GC that allows a Wiimote to interact with the GC environment
using Wiimote’s sensory information such as acceleration, up/down/left/right and button press/actions. The
approach chosen was to input directly to the core of GC, thus various functions such as modifying nodes and
changing the camera position in a virtual space were possible. The software architecture is depicted in Fig. 5.

FIG 5: The software architecture of the Wiimote-GC experiment

In the experiment depicted in Fig. 6, the parametric model set up in GC includes a random number of points
scattered across random positions in space and a cube that acts as a selector of points that are located within its
boundaries. As the Wiimote is moved, the cube moves and resizes accordingly. The points selected by the cube
are updated whenever the cube moves.

FIG 6: A Wiimote and a cube selector

In the next experiment (Fig. 7), a Wiimote is used to control the dynamic parametric surface. Whenever the
Wiimote moves, the surface reforms itself dynamically based on the position of the Wiimote controller point
located under the surface. This experiment has an unlimited number of real-world analogies to the creation of

ITcon Vol.16 (2011), Salim, pg. 139

responsive surfaces or façades. If other sensors such as light, temperature or wind sensors can be linked to such a
surfaces, it would be useful to simulate a surface that can respond, adapt, and reform itself to suit the changing
environment (e.g. a roof that extends its eaves on a hot sunny day, or a wall that curves itself when someone sits
in a windy non-enclosed space).

FIG 7: A Wiimote and a parametric surface

In the experiment depicted in Fig. 8, a Wiimote is used to draw a BsplineCurve. Given the unrestricted
movement of the Wiimote in the physical space and its ability not only to feed x, y, z positions in space (using
infra-red emitter and tracker), but also to stream gravity acceleration data as the Wiimote is moved, it has the
potential to be a tool complementary to the mouse for 3D sketching.

FIG 8: A Wiimote for 3D sketching

The experiment shown in Fig. 9 demonstrates the use of the Wiimote as a camera view controller. The
parametric model in GC contains a sphere object. The Wiimote is connected to a GC camera object that is linked
with a controller point traveling on a sphere and gives a snapshot of the model from the camera point of view.
The camera views the surface from a certain direction and angle from the sphere and can take snapshots of the
view.

FIG 9: A Wiimote as a camera view controller

The parametric model in the following experiment (Fig. 10) has a direction vector as the parameter interfacing
with the Wiimote’s x, y and z gravity acceleration movement. The movement of the Wiimote in a certain
direction updates the position of the axis (direction vector) of the object and causes the object to move along the
same direction as the Wiimote.

ITcon Vol.16 (2011), Salim, pg. 140

FIG 10: Dancing pole

The last experiment (Fig. 11) demonstrates the use of the Wiimote buttons (up/down/left/right/A/B) as a “remote
control” to dynamically move components across the grid points in the model or to magnify or shrink the
selected object in the model ‘on-the-fly’. For example, pressing ‘B’ button enlarges the GC parameterized
component associated with the Wiimote.

FIG 11: Dynamic object mover, magnifier or shrinkage controller

Through these experiments, we discovered that setting up and calibrating the parametric models in order to get
coherent movement with the Wiimote is very challenging initially. We also discovered that the parametric
models we set up in GC could not handle more than three “live” parameters. Once we have more than three
parameters accepting real-time live updates from Wiimote sensors, the updates became slower and eventually
stopped updating. Although this issue might be platform or software specific, sending sensor data streams
straight to the parametric models without pre-processing is not efficient. It would be better to pre-process the
sensor data on board the devices or in the software that bridges the connection between the devices and CAD
program and only transmit data when the device’s states have substantially changed.

2 The Eye
The second experiment in SmartGeometry 2009 is using a different protocol. It allows for input into GC and
output from GC. The experiment setup was a simple relation between a physical model and a virtual
representation of an eye. The virtual model mimics the physical model and vice versa, thereby allowing for
calibration and for trans-reality feedback loops.

The physical model of the eye was a little robot that consists of a (web) camera and two servo motors. The
orientation of one servo motor allows the camera to rotate along a vertical axis, and the other allows for
movement along a horizontal axis. The servos rotate 180 degrees. The view of the camera could therefore cover
roughly half a sphere like the eye of a chameleon (Fig. 12).

The two servos are controlled using an Arduino controller board. Arduino is an open-source electronics
prototyping platform based on flexible, easy-to-use hardware and software (Arduino, 2009). Arduino controller
boards connect to other hardware and have a chip that can be programmed and then run in a stand-alone mode.
The board can also stay connected to a USB port of a computer and communicate through a serial protocol. The
controller board was programmed to wait for a signal on the serial port. If the signal comes in the right format,
the signal is decoded and the two servos are instructed to rotate to a defined angle.

The webcam was also connected to a computer. Open source software (openFrameworks, 2009) was used and
adapted to control the webcam and compare consecutive frames. Areas in the image that are different from the
previous are marked. Therefore the software can tell that firstly there is motion in the image, and secondly where
in the image that motion takes place. The software was adapted to send data to the serial port in a format that

ITcon Vol.16 (2011), Salim, pg. 141

Arduino could interpret. The largest area of motion in the picture indicated the point of interest and the software
would make the camera point towards that point of interest. When the camera moves however, consecutive
images look completely different. Therefore a delay was added between instructions, and it was found that
motion tracking of a single object along an evenly coloured background worked best. With the integration of
openCV (OpenCV, 2009) for face recognition and tracking, the background image is ignored and the
performance of the motion tracking is improved. The software implementation is depicted in Fig. 13.

FIG 12: The physical sensor and actuator of the Eye

FIG 13: The software architecture of the Eye experiment

The virtual model is a sphere in GC with a dish-like solid to represent the iris and the pupil (Fig. 14). The size of
the eyeball was kept fixed, but the rotation of the eye was based on two graph variables for a rotation along a
vertical axis and rotation along a horizontal axis. The size of the pupil was controllable through another graph
variable. There were two directions of communication: the GC output mode and the GC input mode.

FIG 14: The Virtual Eye interacting with the Physical Eye

In the GC output mode the eyeball was controlled in GC using the sliders alongside the graph variables. A

ITcon Vol.16 (2011), Salim, pg. 142

function was written in C# that would create a communication channel with the serial port. On a change of one
of the variables in GC, this would send data over that channel. The data in turn would be interpreted by Arduino
and rotate the camera. A window on the screen would display the live video stream of the camera.

For the GC input mode use was made of a web server that runs as a plug-in in GC. The web server when started
waits for http requests of a specified form. This way the values of graph variables can be changed for example.
The camera position was changed by moving objects that the camera would track. Based on the instructions sent
to the camera, the software also sends http requests to the local web server. The graph variables would be
updated and the graphic display in GC updates accordingly. The size of the pupil was driven by the size of the
movement blob in the video stream.

These experiments demonstrated that we can set up parametric models that receive “live” input data from the
ambient environment or user interaction. This implies that ephemeral data that comes from the environment,
such as light, sound, and wind, does not need to be archived or recorded for simulation purposes. These
experiments also demonstrated the potential of new modes of interaction with 3D parametric models. The
intended behaviours of the parametric models can be scripted to generate different types of geometry
manipulations while interacting with the models.

3 Responsive Façade Design with Ambient Sensor Data
The experiment described in this section was conducted by Bang Zhao, a Master of Architecture student enrolled
in an elective course in RMIT. The brief given to him was to design a reading room in Melbourne. The course
was conducted during Melbourne’s summer time in less than two months. In this course, students need to
consider the input, process, and output (IPO) of their models. The source of input data can be varied: the outdoor
environments, atmospheres, the city, surrounding buildings, or the indoor environments. The process includes
analysis and computation of the data and mapping of the data to the intended outcomes or behaviours. The
output includes responsive behaviours, movements, or motorised actuations of the models.

A site was chosen in Melbourne Botanical Garden to design a pavilion for reading or resting (Fig. 15). The
design requirements include the need to provide good light environment for reading.

FIG 15: Left – a site chosen for the pavilion in Melbourne Botanical Garden. Right – the pavilion model.

To inform the design, instead of using the traditional approach of using light simulation and a solar path diagram
in order to predict the light level at different times of day, experiments were performed with a number of light
sensors and a lux reader in the design process. Although there can be a number of parameters in designing a
comfortable reading space, such as noise, temperature, wind, and light, given the short time frame of the project,
light was chosen as a design constraint of the reading space for proof of concept.

Firstly, we experimented with Rhino 3D models that are responsive to real-time ambient light data input from
Arduino Light-Dependent-Resistors (LDR). Changes on the ambient light level trigger fluctuations on LDR

ITcon Vol.16 (2011), Salim, pg. 143

readings, which subsequently trigger updates on the parametric models set in Rhino (Fig. 16). The parametric
variations in the Rhino model are scripted using RhinoScript.

FIG 16: Responsive Rhino 3D models connected to light sensors

Secondly, the student went around a number of popular reading locations around the city of Melbourne and
carrying a book, an arduino light sensor and a lux reader to measure the ambient light level in these spaces (Fig.
17). After general observations and analysing these data, we conclude that on average, Melbournians would find
580-600 lux a comfortable light level for reading. This particular part of the study is essential given there can be
cultural differences in how people in general respond to a certain light level in doing specific tasks as well as
regulatory differences in lighting requirements. This task was also performed to calibrate the arduino light
sensor.

FIG 17: Left – Popular reading locations around Melbourne CBD. Right – the ambient light level measurement.

Thirdly, we calibrated the reading of the Arduino LDR with the lux reader (Fig. 18). Given that the models set
up in Rhino can respond to ambient light level read by the LDR, the solution space for the optimal design can be
narrowed to those that match the real-time ambient light data.

ITcon Vol.16 (2011), Salim, pg. 144

FIG 18: The calibration of the light sensor data and light reader.

Finally, he fabricated a number of pavilion models with different scales, colours (to simulate materials), and
louver openings (Fig. 19). Within the fabricated models on site, he used an Arduino board and three LDRs to
measure the ambient light level on site at different times of the summer days to determine the best orientation,
material properties, and the angle of louver openings.

FIG 19: Ambient light analysis using Arduino and light sensors being placed inside the physical models.

This experiment demonstrates the value of working with live / real-time ambient sensor data on site in the
modelling process. It also demonstrates the use of embodied virtuality with physical models. The interaction
with such physical models becomes embodied since the meaning of the interaction takes place at a certain time,
location, and constraints. The manipulation of placement, orientation, size, openings, shadings, and timing of the

ITcon Vol.16 (2011), Salim, pg. 145

experiments directly generate data streams that can be further analysed as input to the digital parametric models.
Design decisions can be derived from the analysis of the ambient data that are streamed from the digital platform
embodied in the physical models.

5. OBSERVATIONS, LESSONS LEARNT, AND FUTURE WORK
The experiments in SmartGeometry 2009 demonstrated practical issues that need resolving such as delays in the
system that complicate direct feedback. Also, with increasing complexity of interactions, the response of the
parametric software would decrease. Associativity in the parametric model need to be carefully decoupled with
associativity with real-time physical inputs, since the 3D visualization engine in the parametric software cannot
keep up with the stream of data that updates the 3D models in real-time. Therefore, if the physical input is
continuous rather than discrete, updates need to be deferred or aggregated by setting up time intervals for
updating physical input.

There were also two different frameworks developed for the Wiimote experiments and the eye experiment. The
plug-ins created for those experiments were specifically developed for connecting GenerativeComponents with
particular devices. For a more generic approach and development of this field, a unified method for
communication between various parts of software and hardware would be beneficial. This would allow
flexibility so that "Input", "Output", and "Process" can be openly defined by the designers themselves.

Therefore, the first author invented the UbiMash software platform as a generic and open interoperability tool for
designers to connect any physical devices with CAD software. UbiMash stands for Ubiquitous Mashups. It
facilitates physical devices such as the Wiimotes, cameras, Arduino, sensors, and reacTIVision tangible
interfaces as well as Web 2.0 data (such as from Twitter) to be connected to various parametric design software,
such as Rhino, Grasshopper, GenerativeComponents, and Processing. By utilizing UbiMash, the possibilities for
form fostering have become open-ended. One could use UbiMash to include ambient environmental sensor data
as parameters of the model for performance based design, such as demonstrated in the third experiment in the
previous section. Another potential is for designing physical and tangible interaction with CAD software.
UbiMash can also be used to generate actuated feedback on physical fabricated models which are linked to the
digital model in CAD.

UbiMash is a work-in-progress. It was released as an open-source (UbiMash, 2010) in March 2010 preceding
SmartGeometry 2010. We aim to foster an open source community who are progressively working on a generic
link between the physical and the virtual and continually testing it to generate useful and practical prototypes.

In SmartGeometry 2010, the first and the second author collaborated with Przemyslaw Jaworski from
Fosters+Partners to run the workshop cluster Parametrics and Physical Interactions. UbiMash was heavily
tested and revised during the four days workshop in cooperation with the workshop participants from academia
and industry. The outcomes include seven working prototypes (Fig 20): subjective space scanner, responsive
media façade, subject tracking, rapid design and build coordination with tangible markers, responsive
bioclimactic ceiling, tangible user interface for urban planning, and mass form finding by Twitter (Salim,
Mulder, and Jaworski, 2010).

ITcon Vol.16 (2011), Salim, pg. 146

FIG 20: Parametrics and Physical Interactions workshop cluster in SmartGeometry 2010

Based on the experiments reported in previous section and this section, we observe that one of the key principles
in form fostering is to get the right understanding of a model, not necessarily the right model, in the first place.
Our pedagogical experience of passing on the knowledge of form fostering to others require us to teach about
input, behaviors, and output of a model. As we are not setting up a static model, but kinetic, interactive, or
responsive, a model can receive live input from the environment or a physical interface, will behave in certain
ways, and subsequently, will generate output or feedback, either in the virtual space or in the physical world.

Since there can be too many data to respond to, data analysis, aggregation, or filtering mechanisms are often
required in between a live data source and a model. Further, ambient environmental data often require
interpretation, therefore calibration of physical sensing is required before mapping the data to a 3D model.

Fabrication of 3D models designed with form fostering techniques can be a practical means of evaluating the
suitability of the model on site, such as demonstrated in the summer elective project. However, fabrication of a
responsive model can ultimately lead to a kinetic, interactive, or responsive architecture if configured with a set
of sensors and actuators. This is demonstrated in the Bioclimactic responsive ceiling prototyped in
SmartGeometry 2010. A light sensor is attached to each frame of the ceiling, with capabilities of sensing light
and shade (and therefore people’s movement), and a servo motor is attached to three glass+opaque panels in
each frame to control the movement of the panels in response to light and shade. People passing under the
ceiling could also interact with the sensors in order to generate movements on the panel and experience the
variations of light, shade, and reflection from the ceiling across the wall and the floor.

The work will focus on the continuity of the responsive design through virtual and physical stages and includes
experiments on capturing social and environmental parameters from the urban environment. An investigation of
tools and techniques is also taking place to inform the system with energy analysis software. A number of other

ITcon Vol.16 (2011), Salim, pg. 147

CAD software are also being considered to be linked into UbiMash in order to expand its interoperability and
user base.

6. CONCLUSION
The system prototypes for experiments with form fostering validate the hypothesis of the potential of parametric
modeling software as a simulation bench for responsive architectural design. When integrated with sensors,
actuators, or any physical devices, an early-stage design of responsive architecture can now be simulated in the
digital environment. Design variations in the virtual model can be generated by parametric changes from the
physical environment and vice versa. Responsive architecture may drive this research, but it is envisaged that the
outcomes are more broadly usable in parametric design.

The term form finding is now familiar with respect to pre programming a parametric computational model to
search out optimal form solutions to a defined system of associations, parameters and constraints. The design
progresses through the iterative refinement of these inputs. By contrast, form fostering is adopted as the
description of a system of searching in which the designer may mediate in real time through either virtual or
physical interface in the embodied virtuality. This responsive connection between physical inputs, virtual inputs
and bi-directionality of virtual and physical models is the key to the concept. It is proving a novel and valuable
approach to marrying the active formal interaction of the designer with ambient inputs from sensing in combined
discovery mode. In extended group design conversations, the potential for also linking virtual model intervention
to actuated physical model response (as illustrated by the Eye) is very powerful.

We have reported form fostering experiments from various venues, including SmartGeometry 2009, a summer
elective in RMIT, and SmartGeometry 2010. The UbiMash software framework was developed throughout the
course of this project. UbiMash has enabled connectivity and interoperability between physical devices and 3D
CAD software and between social networking and design. Connecting the virtual and the physical world through
UbiMash has led so far to prototypes that can be classified as: (1) design informers, (2) responsive prototypes,
and (3) interfaces for collaborative design. The Wii and the Eye experiment can be placed under the first
classification, the responsive façade design under the second. If the Wii experiment is enhanced with multi-
player collaboration via multiple Wiimotes connected to the same model, the experiment can as well be
classified under the third category. The SmartGeometry workshop has taught us that there is a great potential for
collaborative design by the means of form fostering and UbiMash.

In taking the research forward, we are planning to investigate in more detail the use of mixed reality tools to
support real world interdisciplinary design conversations. This demands a high degree of fluency between the
virtual and physical representations and design moves.

ITcon Vol.16 (2011), Salim, pg. 148

7. REFERENCES
Arduino. (2009), "Arduino - HomePage". Available from: http://www.arduino.cc/. (accessed 09th November

2009)
Dourish, P. (2001). Where the Action Is: The Foundations of Embodied Interaction. Cambridge, MIT Press.
Frazer, J. (1995). An Evolutionary Architecture, London, Architectural Association Publications.
Hernandez, C.R.B. (2006). Thinking parametric design: introducing parametric Gaudi. Design Studies, 27, 3,

309–324.
Hughes, C. E., Stapleton, C. B., Hughes, D. E. and Smith, E. (2005). Mixed Reality in Education, Entertainment

and Training: An Interdisciplinary Approach. IEEE Computer Graphics and Applications, 26,6,
24-30.

Ishii, H., and Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces between People, Bits, and. Atoms,
Proceedings of CHI'97, 234-241.

Lee, J. C. (2008). Hacking the Nintendo Wii Remote. IEEE Pervasive Computing, 7,3, 39-45.
Massachusetts Institute of Technology. (2008), Digital Water Pavilion Makes A Splash In Spain. ScienceDaily.

http://www.sciencedaily.com/releases/2008/06/080617115237.htm.
Monedero, J. (2000). Parametric design: a review and some experiences. Automation in Construction, 9, 4, 369–

377.
Milgram, P. and Kishino, F. (1994). Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on

Information Systems, E77-D,12, 1321-1329.
Oosterhuis, K. and Biloria, N. (2008). Interactions with proactive architectural spaces: the muscle projects.

Communications of the ACM, 51,6, 70-78.
Oosterhuis, K. and Lénárd, I. (2008). ONLogic: speed and vision. Melbourne, Images Publishing.
OpenCV. (2009). "OpenCV Wiki". Available from: http://opencv.willowgarage.com/wiki/. (accessed 9th

November 2009)
openFrameworks. (2009). "openFrameworks". Available from: http://www.openframeworks.cc/. (accessed 9th

November 2009)
Peek, B. (2007). "Managed Library for Nintendo’s Wiimote". Available from:

http://www.brianpeek.com/blog/pages/wiimotelib.aspx. (accessed 18th October 2010)
Salim, F. D., Mulder, H., Jaworski, P. (2010), Demonstration of an Open Platform for Tangible and Social

Interactions with Responsive Models, Association for Computer Aided Design in Architecture
(ACADIA) 2010 Conference - Life in:formation, New York, US, 21-24 October 2010.

UbiMash. (2010). "UbiMash". Available from: http://ubimash.com (accessed 18th October 2010)
Weiser, M. (1991). The Computer for the 21st Century. Scientific American, Special Issue on Communications,

Computers, and Networks, September, 1991
WiiRemoteJ. (2008). "WiiRemoteJ". Available from: http://code.google.com/p/bochovj/wiki/WiiRemoteJ

(accessed 18th October 2010)

Zuk, W. and Clark, R. H. (1970). Kinetic Architecture, New York, Van Nostrand Reinhold.

	FORM FOSTERING: A NOVEL DESIGN APPROACH FOR INTERACTING WITH PARAMETRIC MODELS IN THE EMBODIED VIRTUALITY
	1. THE EMBODIED VIRTUALITY
	2. RESPONSIVE ARCHITECTURE
	3. FORM FOSTERING
	4. FORM FOSTERING EXPERIMENTS
	1 The Wii Remote Experiments
	2 The Eye
	3 Responsive Façade Design with Ambient Sensor Data

	5. OBSERVATIONS, LESSONS LEARNT, AND FUTURE WORK
	6. CONCLUSION
	7. REFERENCES

